Research | Publications

Timbre and Orchestration Resource
External Publications

Publications since APRIL 2018 by ACTOR partners

Alphabetical List here or click here for a searchable list

  • Afghah, T., Patros, E., & Puckette, M. (2018). A pseudoinverse technique for the pressure-matching beamforming method [Conference presentation]. 145th Audio Engineering Society Convention, New York, NY, United States. https://www.aes.org/events/145/

  • Afghah, T., Patros, E., & Puckette, M. (2019, March). The physical evaluation of the efficiency of an enhanced pressure-matching beamforming method using eigen decomposition pseudoinverse mathematical approach. In Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio. Audio Engineering Society. http://www.aes.org/e-lib/browse.cfm?elib=20442

  • Antoine, A., Depalle, P., Macnab-Séguin, P. & McAdams, S. (2021). Modeling human experts' identification of orchestral blends using symbolic information. In R. Kronland-Martinet, S. Ystad & M. Aramaki (Eds.), Perception, representations, image, sound, music (pp. 363-378). Springer Verlag. https://doi.org/10.1007/978-3-030-70210-6_24

  • Aouameur, C., Esling, P., & Hadjeres, G. (2019). Neural drum machine: An interactive system for real-time synthesis of drum sounds. arXiv preprint arXiv:1907.02637. https://arxiv.org/abs/1907.02637

  • Axelsson, Ö., Guastavino, C., & Payne, S. R. (2019). Soundscape Assessment. Frontiers in psychology, 10, 2514. doi: 10.3389/fpsyg.2019.02514 

  • Bachir-Loopuyt, T., Couprie, P., Gétreau, F., and Hérold, N. (Eds.). (2019). Proceedings of the symposium Les sciences de la musique : de nouveaux défis dans une société en mutation. Paris. https://sites.google.com/view/symposium2019/actes-électroniques-du-symposium-en-libre-accès 

  • Bazin, P., and Hasegawa, R. (Eds.). (2019). Les voies de la pansonorité : La microtonalité d’hier à aujourd’hui. Université de Montréal. https://revuecircuit.ca/collection/29_2/

  • Berndt, A., Waloschek, S., & Hadjakos, A. (2018). Meico: A Converter Framework for Bridging the Gap between Digital Music Editions and its Applications. Proceedings of the Audio Mostly 2018 on Sound in Immersion and Emotion. USA, 18, 1-7. https://doi.org/10.1145/3243274.3243282

  • Berndt, A. & Bohl, B. (2018). Music Performance Markup: Formale Beschreibung musikalischer Interpretationen. editio, 32(1), 185-204. https://doi.org/10.1515/editio-2018-0012

  • Berndt, A. (2019). Interactive Media Scoring with Ambient Music. In M. Adkins and S. Cummings (Eds.), Music beyond airports: Appraising ambient music(pp. 197-226). University of Huddersfield Press. https://unipress.hud.ac.uk/plugins/books/19/

  • Bitton, A., Chemla—Romeu-Santos, A., & Esling, P. (2018). Timbre transfer between orchestral instruments with semi-supervised learning. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a many-splendored thing (pp. 109-110). McGill University. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Bitton, A., Esling, P., Caillon, A., & Fouilleul, M. (2019). Assisted sound sample generation with musical conditioning in adversarial auto-encoders. arXiv preprint arXiv:1904.06215. https://arxiv.org/abs/1904.06215v2

  • Bockstael, A., Steele, D., Trudeau, C., & Guastavino, C. (2019). Forever young: Is age of importance in urban soundscape design?. Proceedings Of the 26th International Congress on Sound And Vibration, Canada, 5. https://www.researchgate.net/publication/337290268_Forever_Young_is_age_of_importance_in_urban_soundscape_design#read

  • Boulan, M., Guillotel-Nothmann, C., and Hérold, N. (Eds.). (2020). Musurgia XXVII/2. Eska.

  • Boulan, M., Guillotel-Nothmann, C., and Hérold, N. (Eds.). (2020). Musurgia XXVII/1. Eska. https://www.cairn.info/revue-musurgia-2020-1.htm

  • Boulan, M., Guillotel-Nothmann, C., and Hérold, N. (Eds.). (2019). Musurgia XXVI. Eska. https://www.cairn.info/revue-musurgia-2019-3.htm

  • Boutard, G., & Guastavino, C. (2018). Cultural heritage, information science, and the creative process. In N. Donin (Ed.), The Oxford Handbook of the Creative Process in Music. DOI: 10.1093/oxfordhb/9780190636197.001.0001

  • Boyd, J., Popa, I., Ritter, M., and Sallis, F. (2019). Engagin in playful creation: Two case studies in mediated music education. La musica del Novecento: una risorsa per la scuola. Strumenti, proposte, riflessioni. 140-162 http://ojs.francoangeli.it/_omp/index.php/oa/catalog/book/389

  • Burns, A.-M., & Traube, C. (2020). Reports From the Field: Learning to Play the Guitar With the Novaxe Online Learning Platform. In Waldron, J., Horsley, S., and Veblen, K (Eds.) The Oxford Handbook of Social Media and Music Learning. Oxford University Press. DOI: 10.1093/oxfordhb/9780190660772.013.15

  • Caetano, M., and Cella, C. (2021). Imitative computer-aided musical orchestration with biologically inspired algorithms. In Miranda, E. (Ed.) Handbook of artificial intelligence for music Springer. DOI: 10.1007/978-3-030-72116-9 

  • Calvo-Zaragoza, J., Castellanos, F. J., Vigliensoni, G., & Fujinaga, I. (2018). Deep neural networks for document processing of music score images. Applied Sciences, 8(5), 654. https://doi.org/10.3390/app8050654

  • Carsault, T., & Esling, P. (2018). Learning spectral transforms to improve timbre analysis. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a many-splendored thing (pp. 97-98). McGill University. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Carsault, T., Nika, J., and Esling, P. (2018). Using musical relationships between chord labels in automatic chord extraction. In ISMIR (pp. 18-25). taskshttp://ismir2018.ismir.net/doc/pdfs/231_Paper.pdf

  • Castellanos, F. J., Calvo-Zaragoza, J., Vigliensoni, G., & Fujinaga, I. (2018). Document Analysis of Music Score Images with Selectional Auto-Encoders. In ISMIR (pp. 256-263). http://ismir2018.ircam.fr/doc/pdfs/93_Paper.pdf

  • Cella, C. E., & Esling, P. (2018). Open-source modular toolbox for computer-aided orchestration. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a many-splendored thing (93-94). McGill University. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Chemla–Romeu-Santos, A., Esling, P., Haus, G. & Assayag G. (2019). Cross-modal variational inference for bijective signal. Proceeding of the International Conference on Digital Audio Effects DaFX 2019, UK. 112-119. http://dafx2019.bcu.ac.uk/assets/DAFx19Proceedings.pdf

  • Crestel, L., Esling, P., Ghisi, D., and Meier, R. (2018). Generating orchestral music by conditioning SampleRNN. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a many-splendored thing (95-96). McGill University. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • de Francisco, M. (2019). Meeting the challenge of producing classical music for global audiences in the digital era. Journal of Intellectual Property Law & Practice 14(4), 327-330. DOI: https://doi.org/10.1093/jiplp/jpz009

  • de Francisco, M., Kob, M., Rivest, J. F., & Traube, C. (2019). ODESSA–Orchestral Distribution Effects in Sound, Space and Acoustics: An interdisciplinary symphonic recording for the study of orchestral sound blending. Proceedings of the International Symposium on Music Acoustics, ISMA 2019. https://pub.dega-akustik.de/ISMA2019/data/articles/000090.pdf

  • Déguernel, K., Vincent, E., & Assayag, G. (2018). Probabilistic factor oracles for multidimensional machine improvisation. Computer Music Journal, 42(02), 52-66. https://hal.inria.fr/hal-01693750/file/Probabilistic_Factor_Oracles_CMJ42-2.pdf

  • Déguernel, K., Vincent, E., Nika, J., Assayag, G., & Smaïli, K. (2020). Learning of Hierarchical Temporal Structures for Guided Improvisation. Computer Music Journal, 43(2-3), 109-124. https://hal.inria.fr/hal-02378273/document

  • Delisle, J., Hasegawa, R., Noble, J., and Touizrar, M. (in preparation). The Oxford Handbook of Orchestration Studies. Oxford University Press.

  • Dolan, E., & Rehding, A. (2021). Oxford Handbook of Timbre. Oxford University Press.

  • Dolan, E.I. & Patteson, T. (2018) Ethereal timbres. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. DOI: 10.1093/oxfordhb/9780190637224.013.27

  • Dolan, E.I., & Rehding, A. (2020). Timbre: Alternative Histories and Possible Futures for the Study of Music. In E. Dolan and A. Rehding (Eds.), The Oxford Handbook of Timbre. Oxford. DOI: 10.1093/oxfordhb/9780190637224.013.36 

  • Donahue, C., McAuley, J., & Puckette, M. (2018). Adversarial audio synthesis. arXiv preprint arXiv:1802.04208. https://arxiv.org/abs/1802.04208

  • Donahue, C., McAuley, J., & Puckette, M. (2018). Synthesizing audio with GANs. ICLR 2018 https://openreview.net/pdf/4eafb40ca29e8bf472f726381a6711526f844567.pdf

  • Doras, G., Esling, P., & Peeters, G. (2019, January). On the use of u-net for dominant melody estimation in polyphonic music. In 2019 International Workshop on Multilayer Music Representation and Processing (MMRP) (pp. 66-70). IEEE. https://hal.archives-ouvertes.fr/hal-02457728/document

  • Ducher, J. F., & Esling, P. (2019, November). Folded CQT RCNN for Real-time Recognition of Instrument Playing Techniques. In International Society for Music Information Retrieval (ISMIR2019). https://hal.archives-ouvertes.fr/hal-02472560/document

  • Esling, P., Chemla-Romeu-Santos, A., & Bitton, A. (2018). Bridging Audio Analysis, Perception and Synthesis with Perceptually-regularized Variational Timbre Spaces. In ISMIR (pp. 175-181). http://ismir2018.ismir.net/doc/pdfs/219_Paper.pdf

  • Esling, P., Chemla—Romeu-Santos, A., and Bitton, A. (2018). Generative timbre spaces: Regularizing variational auto-encorders with perceptual metrics. arXiv:1805.08501. https://arxiv.org/pdf/1805.08501.pdf

  • Esling, P., Masuda, N., Bardet, A., & Despres, R. (2019). Universal audio synthesizer control with normalizing flows. arXiv preprint arXiv:1907.00971. https://arxiv.org/pdf/1907.00971.pdf

  • Féron, F. X., Guastavino, C., & Carat, B. (2018, July). Acoustical analyses of extended playing techniques in Pression by Helmut Lachenmann. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a many-splendored thing (99-100). McGill University. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Féron, F. X., & Guastavino, C. (2018). Étudier la musique sous toutes ses formes: la démultiplication des approches scientifiques en musicologie. Histoire de la recherche contemporaine. La revue du Comité pour l’histoire du CNRS, 7(1), 40-49. https://doi.org/10.4000/hrc.1940

  • Féron, F.-X., Camier, C., Guastavino, C. (2020). Spatial effects induced by a sound centrifuge [Abstract]. Forum IRCAM Hors les murs, Montreal, QC, Canada. https://halshs.archives-ouvertes.fr/halshs-03081908

  • Fink, R., Wallmark, Z., & Latour, M. (2018). Introduction–Chasing the Dragon: In R. Fink, M. Latour, and Z. Wallmark (Eds.). Search of Tone in Popular Music. The Relentless Pursuit of Tone: Timbre in Popular Music, 1-17. DOI:10.1093/oso/9780199985227.003.0001

  • Fink, R., Latour, M., & Wallmark, Z. (Eds.). (2018). The relentless pursuit of tone: Timbre in popular music. Oxford University Press.

  • Fischer, M., Soden, K, Thoret, E., Montrey, M, & McAdams, S. (2021). Instrument timbre enhances perceptual segregation in orchestral music. Music Perception, 38(5), pp. 473-498. DOI: https://doi.org/10.1525/MP.2021.38.5.473

  • Fraisse, V., Steele, D., d'Ambrosio, S., & Guastavino, C. (2020). Shaping urban soundscapes through sound art: a case study in a public square exposed to construction noise. In International Workshop on Haptic and Audio Interaction Design. https://hal.archives-ouvertes.fr/hal-02901201/document

  • Fujinaga, I., Hankinson, A., & Pugin, L. (2018). Automatic score extraction with optical music recognition (omr). In R. Bader (Ed.). Springer Handbook of Systematic Musicology (pp. 299-311). Springer, Berlin, Heidelberg. https://www.springerprofessional.de/en/automatic-score-extraction-with-optical-music-recognition-omr/15554608

  • Gari, S., Kob, M., & Lokki, T. (2019). Analysis of trumpet performance adjustments due to room acoustics. In Proceedings of the International Symposium on Room Acoustics: 15 to 17 September 2019 in Amsterdam, Netherlands (pp. 65-73). Nederlands Akoestisch Genootschap (NAG). https://publications.rwth-aachen.de/record/772232

  • Gari, S. V. A., Kob, M., & Lokki, T. (2019). Analysis of trumpet performance adjustments due to room acoustics. Universitätsbibliothek der RWTH Aachen.

  • Gillick, J., Cella, C. E., & Bamman, D. (2019, November). Estimating Unobserved Audio Features for Target-Based Orchestration. In ISMIR (pp. 192-199).DOI: 10.5281/zenodo.3527776

  • Goldman, J. (2020). Review of CD “Dániel Péter Biró, Mishpatim, Noa Frenkel (contralto), Ernis Theodorakis (piano), Ensemble SurPlus, SWR Experimentalstudio, Double SACD, NEOS 11919-20, 2019” MusicWorks https://www.musicworks.ca/reviews/daniel-peter-biro-mishpatim-laws

  • Goldman, J. (2021). Probing Gordon Mumma's Studio Heuristic through a Digital Recreation of Mesa (1966). Contemporary Music Review, 39(6), 733-756. https://doi.org/10.1080/07494467.2020.1863009

  • Goodchild, M. & McAdams, S. (2018) Perceptual processes in orchestration. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. DOI: 10.1093/oxfordhb/9780190637224.013.10

  • Goodchild, M., Wild, J., & McAdams, S. (2019). Exploring emotional responses to orchestral gestures. Musicae Scientiae, 23(1), 25-49. DOI: 10.1177/1029864917704033

  • Grothe, T., and Kob, M. (2019). High resolution 3D radiation measurements on the bassoon. Proceedings of the International Symposium on Music Acoustics ISMA 2019. https://pub.dega-akustik.de/ISMA2019/data/articles/000094.pdf

  • Guastavino, C. (2018). Everyday sound categorization. In T. Virtanen and M. Plumbey (Eds.). Computational Analysis of Sound Scenes and Events, 183-213. DOI: 10.1007/978-3-319-63450-0_7

  • Guastavino, C., Dubois, S., Cance, C., Coler, M, and Paté, A. (Eds.). (In review). Exploring Sensory Experiences : A Handbook on Meaning and the Senses. John Benjamins.

  • Guastavino, C., Fraisse, V., D'Ambrosio, S., Legast, E., and Lavoie, M. (2020). Spatial sound art in public spaces. Forum IRCAM Hors les murs, Montreal, QC, Canada. https://www.youtube.com/watch?v=zkSvLuNUKeo

  • Hansen, N.C. and Reymore, L. (2021). Articulatory motor planning and timbral idiosyncrasies as underlying mechanisms of instrument-specific absolute pitch in expert musicians. PLOS One, 16(2), e0247136. https://doi.org/10.1371/journal.pone.0247136

  • Hasegawa, R. (2018). [Liner notes]. In Joshua Fineberg: Sonic Fictions [CD]. Cudworth: Divine art recordings group. https://d2ajug1vehh95s.cloudfront.net/28564booklet.pdf

  • Hasegawa, R. (2019). Explorations of Equal-Tempered Microtonality [Review of the book Manual of Quarter-Tone Harmony, by I. Wyschnegradsky, and the book Steps to the Sea: Ear Training and Composing in a Minute Equal Temperament, by J. Werntz]. Circuit: musiques contemporaines, 29(2), 99-102.
    https://doi.org/10.7202/1062570ar

  • Heng, L. (2018). Timbre in the communication of emotions among performers and listeners from western art music and Chinese music traditions. Masters Thesis. McGill University, Montreal, QC. https://escholarship.mcgill.ca/concern/theses/x346d6558

  • Hasegawa, R. (2019) Timbre as harmony—harmony as timbre. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. DOI: 10.1093/oxfordhb/9780190637224.013.11

  • Hérold, N., Guichaoua, C., and Mays, T. (Eds.)(2021). Acte musical et environnements informatiques (Journées d'Informatique Musicale 2020 - JIM 2020), Université de Strasbourg/Faculté des Arts, Strasbourg. https://jim2020.sciencesconf.org/resource/page/id/14

  • Hérold, N. (2021). "La fille aux cheveux de lin" de Debussy : quelques éléments pour une analyse "timbrique", Profils d'une œuvre, dossier "Debussy, La fille aux cheveux de lin", Société Française d'Analyse Musicalewww.sfam.org/nouveau/Profils.php

  • Hérold, N. (2020). Le timbre face à l'hétérogénéité musicale : conceptualisation, enjeux, pertinence. In M.-N. Masson (Ed.) Entre théorie et analyse musicale : corpus et méthodes, p. 189-211, Delatour, Sampzon, https://www.researchgate.net/publication/348383060_Le_timbre_face_a_l%27heterogeneite_musicale_conceptualisation_enjeux_pertinence

  • Hérold, N. (2020). Towards a Theory and Analysis of Timbre based on Auditory Scene Analysis Principles : A Case Study of Beethoven's Piano Sonata Op. 106, Third Movement. In A. Zacharakis, C. Saitis, and K. Siedenburg (Eds.), Proceedings of the 2nd International Conference on Timbre (Timbre 2020), p. 146-148, The School of Music Studies, Aristotle University of Thessaloniki. https://www.researchgate.net/publication/344015598_Towards_a_Theory_and_Analysis_of_Timbre_based_on_Auditory_Scene_Analysis_Principles_A_Case_Study_of_Beethoven%27s_Piano_Sonata_Op_106_Third_Movement

  • Hérold, N. (2018). Le traitement de la forme brève dans le Carnaval op. 9 de Schumann : un éclairage à partir de l’analyse timbrique. In V. Cotro (Ed.) Musique et formes brèves. Peter Lang, Bruxelles. 105-120. https://www.researchgate.net/publication/343651218_Le_traitement_de_la_forme_breve_dans_le_Carnaval_op_9_de_Schumann_un_eclairage_a_partir_de_l%27analyse_timbrique

  • Hérold, N. (2018). Timbre et signification musicale : la spécificité pianistique des topiques dans la musique pour piano de Franz Liszt. In M. Grabócz (Ed.) Les grands topoï du xixe siècle et la musique de Franz Liszt.Hermann, Paris. 303-318. https://www.researchgate.net/publication/345387681_Timbre_et_signification_musicale_la_specificite_pianistique_des_topiques_dans_la_musique_pour_piano_de_Franz_Liszt

  • Hérold, N., & Michel, P. (2019) Enregistrer les Dix pièces pour quintette à vent de György Ligeti sous la direction artistique du compositeur. Musimédiane 9(4). https://musimediane.com/numero9/HEROLD-MICHEL/

  • Hérold, N. (2020). Le timbre face à l’hétérogénéité musicale : conceptualisation, enjeux, pertinence. In M.-N. Masson (Ed.) Entre théorie et analyse musicale : corpus et méthodes. Delatour, Sampzon. 189-211. https://www.researchgate.net/publication/348383060_Le_timbre_face_a_l%27heterogeneite_musicale_conceptualisation_enjeux_pertinence

  • Hérold, N. (Ed.). (2020). Musique en acte 1. Gream. https://gream.unistra.fr/revue-musique-en-acte/musique-en-acte-1-2020/

  • Hérold, N. (2020). Analyser le timbre : Objets, méthodes, représentations. In P. Lalitte (Ed.) Musique et cognition : perspectives pour l'analyse et la performance musicales.Éditions Universitaires de Dijon, Dijon. 15-33. https://www.researchgate.net/publication/343651033_Analyser_le_timbre_objets_methodes_representations

  • Ioannou, S., & Kob, M. (2019). Investigation of the blending of sound in a string ensemble. Proceedings of the International Symposium on Music Acoustics ISMA 2019. (pp 42-49). https://pub.dega-akustik.de/ISMA2019/data/articles/000093.pdf

  • Kazazis, S., Depalle, P., & McAdams, S. (2021). Ordinal scaling of timbre-related spectral audio descriptors. The Journal of the Acoustical Society of America 149, 3785-3796 (2021) https://doi.org/10.1121/10.0005058

  • Kestler, G., Yadegari, S., & Nahamoo, D. (2019, May). Head related impulse response interpolation and extrapolation using Deep Belief Networks. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, (pp. 266-270). DOI: 10.1109/ICASSP.2019.8683570

  • Kob, M., & Weege, T. A. (2019). How to Interprete Early Recordings? Artefacts and Resonances in Recording and Reproduction of Singing Voices. In R. Bader (Ed.) Computational Phonogram Archiving (pp. 335-350). Springer, Cham. https://www.springer.com/gp/book/9783030026943

  • Kob, M., and Baskind, A. (2019). Impact of free field inhomogenity on directivity measurements due to the measurement set-up. Proceedings of the International Symposium on Music Acoustics ISMA 2019. (pp 62-67). http://pub.dega-akustik.de/ISMA2019/data/articles/000089.pdf

  • Kob, M. (2019). The human mouth as a sound space. In A. Wilson (Ed.) Sound Worlds from the Body to the City: Listen!. Cambridge Scholars Publishing, UK. 51-58 https://www.cambridgescholars.com/resources/pdfs/978-1-5275-2388-3-sample.pdf

  • Kob, M., Garí, S. V. A., & Kalkandjiev, Z. S. (2020). Room effect on musicians’ performance. In J. Blauert and J. Braasch (Eds.) The Technology of Binaural Understanding, Springer 223-249. https://www.springer.com/gp/book/9783030003852

  • Koh, E. and Yadegari, S. (2018), Mugeetion: Musical interface using facial gesture and emotion. In ICMC 2018. arXiv:1809.05502https://arxiv.org/pdf/1809.05502v2.pdf

  • Lazarov, V., Rennotte, S., & Traube, C. (2019). De l’intention musicale au jeu instrumental. Développement d’un protocole de recherche pour l’analyse qualitative et quantitative de trois styles d’interprétation d’une oeuvre de J.-S. Bach au piano. Revue musicale OICRM, 6(1), 113-141. https://www.erudit.org/fr/revues/rmo/2019-v6-n1-rmo04787/1062431ar.pdf

  • LeBlanc, J. (2020). Movimento, gesto e espaço no Quatour à Cordes. In P. Maia (Ed.). Armando Santiago. Atelier de composição. https://atelierdecomposicao.wordpress.com/2019/07/07/em-producao/

  • Lee, S., & Menicanin, S. (2019). Acoustic Space, Modern Interiority, and Korngold’s Cities. In D. Goldmark and K. Karnes (Eds.). Korngold and His World (pp. 67-88). Princeton University Press. DOI: https://doi.org/10.1515/9780691198736-005

  • Lembke, S. A., Parker, K., Narmour, E., & McAdams, S. (2019). Acoustical correlates of perceptual blend in timbre dyads and triads. Musicae Scientiae, 23(2), 250-274. https://doi.org/10.1177/1029864917731806

  • Leroux, P. (2019). Enfin de l’espace (ultrachromatique et non-octaviant)!. Circuit: musiques contemporaines, 29(2), 11-18. https://revuecircuit.ca/articles/29_2/03-enfin-de-lespace-ultrachromatique/

  • Lockhart, E. (2021). Antoine Reicha, science, and the origins of the music theory. In F. Morabito and L. de Raymond (Eds.) Antoine Reicha and the making of a nineteenth-Ceentury composer. Ut Orpheus. Italy. 93-114. https://www.utorpheus.com/index.php?route=product/product&product_id=3587

  • McAdams, S., and Goodchild, M. (2018) MPCL Technical Report MPCL-001.

  • McAdams, S., & Siedenburg, K. (2019). Perception and cognition of musical timbre. In P. J. Rentfrow & D. J. Levitin (Eds.), Foundations in Music Psychology: Theory and Research, pp. 71-120, MIT Press, Cambridge, MA. https://mitpress.mit.edu/books/foundations-music-psychology

  • McAdams, S. (2019). The perceptual representation of timbre. In K. Siedenburg, C. Saitis, S. McAdams, A. Popper, and R. Fay (Eds.) Timbre: Acoustics, perception, and cognition (pp. 23-57). Springer, Cham. https://www.springer.com/gp/book/9783030148317

  • McAdams, S. (2019). Timbre as a structuring force in music. In K. Siedenburg, C. Saitis, S. McAdams, A. Popper, and R. Fay (Eds.) Timbre: Acoustics, perception, and cognition (pp. 211-243). Springer, Cham. https://www.springer.com/gp/book/9783030148317

  • McAdams, S., & Siedenburg, K. (2019). Timbre perception and orchestration. In P. J. Rentfrow & D. J. Levitin (Eds.), Foundations in Music Psychology: Theory and Research, pp. 71-120, MIT Press, Cambridge, MA. https://mitpress.mit.edu/books/foundations-music-psychology

  • Michel, P. (2020). Melody, repetition, and periodicity: A study of parallels between György Ligeti, Steve Reich, and Terry Riley. In Temes, B.T., & Agawu, K., (Eds.), A tribute to György Ligeti in his native Transylvania n° 1 & 2, Cluj-Napoca : MediaMusica, pp. 133–159. https://www.academia.edu/44915048/Melody_Repetition_and_Periodicity_A_Study_of_Parallels_between_Gy%C3%B6rgy_Ligeti

  • Michel, P. (2019). Restaurer, sauvegarder, s'exprimer autrement... In H. Demoz and O. Baisez (Eds.) Musique visible. pp. 25-30. Éditions Contrechamps, Genève, Suisse. https://books.openedition.org/contrechamps/3306?lang=en

  • Michel, P. (2020). Towards a consideration of the contemporary musical work as ‘a work in progress’ ; Closing the gaps between the score, the form and the work’s ‘becoming’, in Borio, G., Giurati, G., Cecchi, A., & Lutzu, M. (Eds.), Investigating Musical Performance, Routledge, pp. 124—135. https://doi.org/10.4324/9780429026461

  • Nápoles, N., Vigliensoni, G., & Fujinaga, I. (2018). Encoding matters. In Proceedings of the 5th International Conference on Digital Libraries for Musicology (pp. 69-73). https://doi.org/10.1145/3273024.3273027

  • Neekhara, P., Donahue, C., Puckette, M., Dubnov, S., & McAuley, J. (2019). Expediting TTS synthesis with adversarial vocoding. arXiv preprint arXiv:1904.07944. https://arxiv.org/abs/1904.07944

  • Newsome, G. (2018). Visualizing orchestration with Orcheil. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a Many-Splendord Thing (pp. 160-161), Montreal, QC: McGill University. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Noble, J. (2020). The Paradoxical Complexity of Sound Masses. Part 1: Theoretical Background. In TOR Research-Creation Series. ACTOR Project. https://www.actorproject.org/tor/research-creation-series/paradoxical-complexity/part-1/theoretical-background

  • Noble, J. (2020). The Paradoxical Complexity of Sound Masses. Part 2: Shadow Prism (2015). In TOR Research-Creation Series. ACTOR Project. https://www.actorproject.org/tor/research-creation-series/paradoxical-complexity/part-2/shadow-prism

  • Noble, J. (2020). The Paradoxical Complexity of Sound Masses. Part 3: Fantaisie harmonique. In TOR Research-Creation Series. ACTOR Project. https://www.actorproject.org/tor/research-creation-series/part-3/fantasie-harmonique

  • Noble, J. (2020). Down the Rabbit Hole: Adventures in a Digital Wonderland. In The Pro Coro Voice. https://www.procoro.ca/blog/down-the-rabbit-hole

  • Noble, J. (2021). A case study of perceptual challenges and advantages of homogeneous orchestration: fantaisie harmonique (2019) for guitar double-orchestra. In Proceedings of The 21st Century Guitar (2nd edition). https://youtu.be/qDhatDWPW7I (beginning 2:32:30)

  • Noble, J. (2021). Challenges and advantages of homogeneous orchestration: fantaisie harmonique. In Proceedings of the IRCAM hors les murs workshop: Spatialization, Orchestration, Perception. https://youtu.be/Ss1af17r0fc

  • Noble, J. and McAdams, S. (2018). Meaning beyond content: Extramusical associations are plural but not arbitray. In R. Parncutt and S. Sattmann (Eds.). Proceedings of ICMPC15/ESCOM10 (pp.332-335). Graz, Austria: Centre for Systematic Musicology, University of Graz. https://static.uni-graz.at/fileadmin/veranstaltungen/music-psychology-conference2018/documents/ICMPC15_ESCOM10%20Proceedings.pdf

  • Noble, J. (2018). Removing the imaginary boundary between score and work. In S. Bhagwati (Ed.). Proceedings of the Fourth International Conference on Technologies for Music Notation and Representation (pp. 174-180). Concordia University. https://www.tenor-conference.org/proceedings/2018/22_Noble_tenor18.pdf

  • Noble, J., Henry, M., Thoret, E., McAdams, S. (2018). Timbre and semantics in sound mass music. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a Many-Splendord Thing, Montreal, QC: McGill University, 134-135. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Noble, J. (2018). What Can the Temporal Structure of Auditory Perception Tell Us about Musical "Timelessness"?. Music Theory Online, 24(3). DOI: 10.30535/mto.24.3.5

  • Noble, J. (2019). Being Time: Case Studies in Musical Temporality. By Richard Glover, Jennie Gottschalk, and Bryn Harrison. Music and Letters, 100(4). 755–757. https://doi.org/10.1093/ml/gcz084

  • Noble, J. (2020). “Directions of Choral Research at the Beginning of the 21st Century.” In H. Godmundsdottir, C. Beynon, K. Ludke, and A. Cohen (Eds.) The Routledge Companion to Interdisciplinary Research in Singing, Volume II: Education. https://www.routledge.com/The-Routledge-Companion-to-Interdisciplinary-Studies-in-Singing-Volume/Gudmundsdottir-Beynon-Ludke-Cohen/p/book/9781138061149

  • Noble, J., Bonin, T., & McAdams, S. (2020). Experiences of Time and Timelessness in Electroacoustic Music. Organised Sound, 25(2), 232-247. DOI: https://doi.org/10.1017/S135577182000014X

  • Noble, J., Thoret, E., Henry, M., & Mcadams, S. (2020). Semantic dimensions of sound mass music: mappings between perceptual and acoustic domains. Music Perception: An Interdisciplinary Journal, 38(2), 214-242. https://doi.org/10.1525/mp.2020.38.2.214

  • Noble, J., & McAdams, S. (2020). Sound mass, auditory perception, and ‘post-tone’music. Journal of New Music Research, 49(3), 231-251. https://doi.org/10.1080/09298215.2020.1749673

  • Noble, J., Soden, K., & Wallmark, Z. (2020). The Semantics of Orchestration: A Corpus Analysis. Proceedings of the 2nd International Conference on Timbre (Timbre 2020). Online. Greece. http://timbre2020.mus.auth.gr/assets/papers/38.Noble.pdf

  • Noble, J. (Forthcoming). Comparing Temporal Fictions in Tonality and Triadic Post-Tonality: Chopin’s Fourth Ballade as a Link Between the Ages. In M. Phillips and M. Sergeant (Eds.) Music and time: Psychology, philosophy and practice. Boydell & Brewer. https://philpapers.org/rec/PHIMAT-4

  • Noble, J. (Forthcoming). Evaluating the Psychological Reality of Alternate Temporalities in Contemporary Music: Empirical Case Studies of Gérard Grisey’s Vortex Temporum. In C. Wollner and J. London (Eds.) Moving bodies: Experiencing time in music and dance. Oxford University Press.

  • Noble, J. and Cowan, S. (2020). Timbre-based composition for the guitar: A non-guitarist’s approach to mapping and notation. Soundboard Scholar, no. 6, 22-35. https://www.guitarfoundation.org/page/SbS06-Noble-Cowan

  • Pabon, P., Howard, D., Ternstrom, S., Kob, M., and Eckel, G. (2019). Future perspectives. In G. Welch, D. Howard, and J. Nix (Eds.) Oxford handbook of singing. Oxford University Press. DOI: 10.1093/oxfordhb/9780199660773.013.67

  • Paté, A., Guastavino, C., and Gaillard, P. (2018). Schafer and Schaeffer: when musicians promote scientific hypotheses on auditory perception [Abstract]. In Uncommon Senses II: Art, Technology, Education, Law, Society - and Sensory Diversity. Concordia University. http://www.sensorystudies.org/uncommon-senses-ii/

  • Payne, S. R., & Guastavino, C. (2018). Exploring the validity of the Perceived Restorativeness Soundscape Scale: A psycholinguistic approach. Frontiers in psychology, 9, 2224. https://doi.org/10.3389/fpsyg.2018.02224

  • Puckette, M., and Hagan, K. (2020). Remnant: exploring presence and absence through acoustic disturbances in space. In Proceedings of the International Computer Music Conference (ICMC 2019). New York. http://musicweb.ucsd.edu/~mpuckette/Publications/icmc2019-reprint.pdf

  • Radford, L. (2020). Getting into Place/Space: The Pedagogy of Spatial Audio (Advanced). In P. Bell (Ed.) The Music Technology Cookbook (pp. 133-138). Oxford University Press. https://global.oup.com/academic/product/the-music-technology-cookbook-9780197523889?cc=ca&lang=en&#

  • Radford, L. (2019). To mix or not to mix: unifying the creative process in composing for instruments and electronics. In Proceedings of the International Computer Music Conference (ICMC 2019). New York.

  • Rehding, A. (2018) Timbre/techne. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. DOI: 10.1093/oxfordhb/9780190637224.013.31

  • Rehding, A. (2019). Opening the Music Box. Journal of the Royal Musical Association, 144(1), 205-221. https://doi.org/10.1080/02690403.2019.1575596

  • Reuter, C., Delisle, J., Czedik-Eysenberg, I., Siddiq, S., & Eder, M. (2020). The strange behavior of flute partial sounds in sound radiation. DAGA 2020: 46. Annual Meeting for Acoustics, Hannover (p. 651-652). German Society for Acoustics (DEGA).

  • Reymore, L., & Hansen, N. C. (2020). A Theory of Instrument-Specific Absolute Pitch. Frontiers in psychology, 11, 2801. https://doi.org/10.3389/fpsyg.2020.560877

  • Reymore, L. (2021). Characterizing prototypical musical instrument timbres with Timbre Trait Profiles. Musicae Scientiae (online first publication). https://doi.org/10.1177/10298649211001523

  • Reymore, L. (2020). Empirical approaches to timbre semantics as a foundation for musical analysis. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

  • Reymore, L., & Huron, D. (2020). Using auditory imagery tasks to map the cognitive linguistic dimensions of musical instrument timbre qualia. Psychomusicology: Music, Mind, and Brain, 30(3), 124–144. https://doi.org/10.1037/pmu0000263

  • Roggerone, V., Vacher, J., Tarlao, C., & Guastavino, C. (2019). Auditory motion perception emerges from successive sound localizations integrated over time. Scientific reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-52742-0

  • Rosi, V., Olivier Houix, Nicolas Misdariis, Patrick Susini. Uncovering the meaning of four semantic attributes of sound : Bright, Warm, Round and Rough Interviews with sound experts. TIMBRE-2020, Sep 2020, Thessalonique, France. ⟨hal-03016038⟩ https://hal.archives-ouvertes.fr/hal-03016038v1

  • Saitis, C., & Siedenburg, K. (2020). Brightness perception for musical instrument sounds: Relation to timbre dissimilarity and source-cause categories. The Journal of the Acoustical Society of America, 148(4), 2256-2266. https://doi.org/10.1121/10.0002275

  • Siedenburg, K., & McAdams, S. (2018). Short-term recognition of timbre sequences: Music training, pitch variability, and timbral similarity. Music Perception: An Interdisciplinary Journal, 36(1), 24-39. https://doi.org/10.1525/mp.2018.36.1.24

  • Siedenburg, K., Saitis, C., & McAdams, S. (2019). The Present, Past, and Future of Timbre Research. In K. Siedenburg, C. Saitis, S. McAdams, A. Popper, and R. Fay (Eds.) Timbre: Acoustics, perception, and cognition (pp. 1-19). Springer, Cham. https://www.springer.com/gp/book/9783030148317

  • Siedenburg, K., Saitis, C., McAdams, S., Popper, A. N., & Fay, R. R. (Eds.). (2019). Timbre: Acoustics, perception, and cognition. Springer.

  • Soden, K. (2020). Orchestrational combinations and transformations in operatic and symphonic music. Ph.D. Thesis. McGill University, Montreal, QC.

  • Steele, D., Kerrigan, C., & Guastavino, C. (2020). Sounds in the city: bridging the gaps from research to practice through soundscape workshops. Journal of Urban Design, 25(5), 646-664. https://doi.org/10.1080/13574809.2019.1699399

  • Steele, D., Legast, É., Trudeau, C., Fraisse, V., & Guastavino, C. (2019, July). Sounds in the city: Improving the soundscape of a public square through sound art. In Proceedings of the ISCV (Vol. 26). https://www.researchgate.net/publication/333058798_Sounds_in_the_City_Improving_the_soundscape_of_a_public_square_through_sound_art

  • Steele, D., Fraisse, V., Bild, E., Guastavino, C. (2021). Bringing music to the park: the effect of Musikiosk on the quality of public experience. Applied Acoustics, 177, 107910. doi.org/10.1016/j.apacoust.2021.107910

  • Sullivan, J., Vanasse, J., Guastavino, C., & Wanderley, M. (2020). Reinventing the Noisebox: Designing Embedded Instruments for Active Musicians. Proceedings of the International Conference on New Interfaces for Musical Expression, NIME’20, Birmingham, UK. http://www-new.idmil.org/wp-content/uploads/2017/03/Sullivan-et-al.-2020-Reinventing-the-Noisebox-Designing-Embedded-Instruments-for-Active-Musicians.pdf

  • Taher, C., Hasegawa, R., & McAdams, S. (2018). Effects of Musical Context on the Recognition of Musical Motives During Listening. Music Perception, 36(1), 77-97. 24(3). https://www.mcgill.ca/mpcl/files/mpcl/taher_2018_muspercept.pdf

  • Talbot, P., Agon, C., & Esling, P. (2017). Interactive computer-aided composition with constraints. Proceedings of the 43rd International Computer Music Conference (ICMC 2017), Shangai, China. https://hal.archives-ouvertes.fr/hal-01577898

  • Tarlao, C., Steele, D., & Guastavino, C. (2019). Investigating factors influencing soundscape evaluations across multiple urban spaces in Montreal. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 259, No. 3) (pp. 6888-6899). Institute of Noise Control Engineering. https://www.researchgate.net/profile/Cynthia-Tarlao/publication/333828130_Investigating_Factors_Influencing_Soundscape_Evaluations_Across_Multiple_Urban_Spaces_In_Montreal/links/5d07ec31458515ea1a6d67f9/Investigating-Factors-Influencing-Soundscape-Evaluations-Across-Multiple-Urban-Spaces-In-Montreal.pdf

  • Tenzer, M. (2018) Timbre and polyphony in Balinese gamelan. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. DOI: 10.1093/oxfordhb/9780190637224.013.19

  • Thoret, E., Caramiaux, B., Depalle, P., McAdams, S. (2018). A computational meta-analysis of human dissimilarity ratings of musical instrument timbre. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a Many-Splendord Thing, Montreal, QC: McGill University, 81-82. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Thoret, E., Goodchild, M., & McAdams, S. (2018). (Eds.) Timbre 2018: timbre is a many-splendored thing. McGill University, Montreal. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Thoret, E., Caramiaux, B., Depalle, P., & McAdams, S. (2020). Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre. Nature Human Behaviour, 1-9. DOI: 10.1038/s41562-020-00987-5

  • Touizrar, M., and Mcadams, S. (2019). Perceptual facets of orchestration in ‘The Angel of Death’ by Roger Reynolds: Timbre and auditory grouping. In P. Lalitte (Ed.) Musique et cognition. Perspectives pour l’analyse et la performance musicales. Dijon: Editions de l'Université de Bourgogne, pp. 55–81. https://www.mcgill.ca/mpcl/files/mpcl/touizrar_mcadams_actes_jam_2016_en.pdf

  • Touizrar, M. (2018). Timbre and semantics in sound mass music. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a Many-Splendord Thing, Montreal, QC: McGill University, 61-62. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Touizrar, M. (2020). Ekphrasis, Enargeia, and the Orchestral Sunrise in Music. In A. Pawelec, A. Shaw, and G. Szpila (Eds.) Text-Image-Music: Crossing the Borders: Intermedial Conversations on the Poetics of Verbal, Visual and Musical Texts. Peter Lang. DOI:https://doi.org/10.3726/b18012

  • Traube, C. (Ed.) (2019). Revue de l’OICRM (Observatoire interdisciplinaire de création et de recherche en musique), vol. 6, no 1. http://revuemusicaleoicrm.org/rmo-vol6-n1/

  • Tronchin, L., Kob, M., & Guarnaccia, C. (2018). Spatial information on voice generation from a multi-channel electroglottograph. Applied Sciences, 8(9), 1560. https://doi.org/10.3390/app8091560

  • Trudeau, C., Guastavino, C., Bild, E., Padois, T., Perna, M., Dumoulin, R., Dupont, T. (2020). Systematic review of municipal noise regulations in Quebec. In Proceedings of the 9th Forum Acusticum, Lyon, France.

  • Trudeau, C., and Guastavino, C. (2020). The environmental injustice of urban sounds environments: A comparative analysis. In Proceedings of the 13th ICBEN Congress on Noise as a Public Health Problem, Stockholm, Sweden.

  • Upham, F. & McAdams, S. (2018). Activity analysis and coordination in continuous responses to music. Music Perception, 35(3), 253-294. DOI: 10.1525/mp.2018.35.3.253

  • Vigliensoni, G., Calvo-Zaragoza, J., & Fujinaga, I. (2018, March). An Environment for Machine Pedagogy: Learning How to Teach Computers to Read Music. In IUI Workshops. http://ceur-ws.org/Vol-2068/milc4.pdf

  • Vigliensoni, G., Calvo-Zaragoza, J., & Fujinaga, I. (2018). Developing an environment for teaching computers to read music. In Proceedings of the 1st International Workshop on Reading Music Systems (pp. 27-28). https://openreview.net/references/pdf?id=B1qSyPwH7

  • Wallmark, Z. & Kendall, R.A. (2018) Describing sound: The cognitive linguistics of timbre. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. DOI: 10.1093/oxfordhb/9780190637224.013.14

  • Wallmark, Z. (2018). Effects of cross-modal Stroop interference on timbre perception. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a Many-Splendord Thing, Montreal, QC: McGill University, 142-143. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Wallmark, Z. (2018). The Sound of Evil: Timbre, Body, and Sacred Violence in Death Metal. In R. Fink, M. Latour, and Z. Wallmark (Eds.) The Relentless Pursuit of Tone: Timbre in Popular Music, 43-64. Oxford Scholarship Online. DOI:10.1093/oso/9780199985227.003.0004

  • Wallmark, Z. (2019). A corpus analysis of timbre semantics in orchestration treatises. Psychology of Music, 47(4), 585-605. https://doi.org/10.1177%2F0305735618768102

  • Wallmark, Z., Frank, R. J., & Nghiem, L. (2019). Creating novel tones from adjectives: An exploratory study using FM synthesis. Psychomusicology: Music, Mind, and Brain, 29(4), 188-199. https://psycnet.apa.org/doi/10.1037/pmu0000240

  • Wallmark, Z. (2019). [Review of the Music at Hand: Instruments, Bodies, and Cognition, by J. De Souza]. Journal of the American Musicological Society, 72(1), 256-260. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1525%2Fjams.2019.72.1.256

  • Wallmark, Z. (2019). Semantic crosstalk in timbre perception. Music & Science, 2. https://doi.org/10.1177%2F2059204319846617

  • Wallmark, Z., & Allen, S. E. (2020). Preschoolers’ crossmodal mappings of timbre. Attention, Perception, & Psychophysics, 1-7, 2230-2236. https://doi.org/10.3758/s13414-020-02015-0

  • Waloschek, S., & Hadjakos, A. (2018). Driftin' Down the Scale: Dynamic Time Warping in the Presence of Pitch Drift and Transpositions. In ISMIR (pp. 630-636). http://ismir2018.ircam.fr/doc/pdfs/97_Paper.pdf

  • Waloschek, S., Hadjakos, A., and Berndt, A. (2018). Score and sound-based interface for exploring music performances. In E. Thoret, M. Goodchild & S. McAdams (Eds.), Timbre 2018: Timbre is a Many-Splendord Thing, Montreal, QC: McGill University, 55-56. https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

  • Yanaky, R., Tarlao, C., & Guastavino, C. (2020). An Interactive Soundscape Simulator for Professionals of the Built Environment. In International Workshop on Haptic and Audio Interaction Design. Montreal, Canada. https://hal.archives-ouvertes.fr/hal-02901211

  • Zeller, M. (2020). Planal Analysis and the Emancipation of Timbre: Klangfarbenmelodie and Timbral Function in Mahler, Schoenebrg, and Webern. Duke University. https://hdl.handle.net/10161/21042

Searchable List


General References

General references from grant proposal

1. Adler, S. (2000). Study of Orchestration, 3rd ed., W.W. Norton, New York, NY.

2. Baggi, D.L. & Haus, G. (2013). Music Navigation with Symbols and Layers: Toward Content Browsing with IEEE 1599 XML Encoding, John Wiley & Sons, Hoboken, NJ.

3. Baratè, A., Haus, G., Ludoviso, L.A. & Presti, G. (2016). Advances and perspectives in web technologies for music representation. @Digicult, 1(2), 1-18.

4. Bay, M., Burgoyne, J. A., Crawford, T., De Roure, D., Downie, J. S., Ehmann, A., Fields, B., Fujinaga, I., Page, K. & Smith, J. B. L (2011). Towards web-scale computational musicology: An update on the SALAMI project. Proc. 10th UK e-Science All Hands Meeting. York, UK.

5. Bengio, Y. (2009). Learning deep architectures for AI. Found. Trends Machine Learning, 2(1), 1–127.

6. Berlioz, H. (1905/1948). Treatise on Instrumentation. Trans. T. Front, Kalmus, New York, NY.

7. Bey, C. & McAdams, S. (2003). Post-recognition of interleaved melodies as an indirect measure of auditory stream formation. J. Exp. Psychol.: Human Percept. Perf., 29, 267–279.

8. Bosseur, J.-Y. & Michel, P. (2007). Musiques contemporaines : Perspectives analytiques 19501985, Editions Minerve, Paris.

9. Boyd, J., Sayles, M., Olsen, L. & Tarjan, P. (2004). Internet broadcast of hockey: A scale prototype. Proc. SPIE Internet Imaging V, San Jose, CA, pp. 193-201.

10. Bregman, A. S. (1990). Auditory Scene Analysis, MIT Press, Cambridge, MA.

11. Britton, E. (2010). Born under a bad star: An analysis of abstract loop-based composition through Aaron Funk’s Szerencsétlen. CEC. eContact 12.4. Montreal, QC. http://econtact.ca/12_4/britton_loop.html

12. Brown, J. C. & Puckette, M. (1993). A high-resolution fundamental frequency determination based on phase changes of the Fourier transform. J. Acoust. Soc. Am., 94(2), 662-667.

13. Carpentier, G., Cordero, V. & Daubresse, E. (2012). Cartographier le timbre. Projet Orchis/Pléione à la Haute Ecole de Musique de Genève. Dissonances, 119, 48-63.

14. Carpentier, G., Daubresse, E., Garcia Victoria, M., Sakei, K. & Villanueva Carratero, F. (2012). Automatic orchestration in practice. Comput. Mus. J., 36, 24-42.

15. Carpentier, G., Tardieu, D., Harvey, J., Assayag, G. & Saint-James, E. (2010). Predicting timbre features of instrument sound combinations: Application to automatic orchestration. J. New Mus. Res., 39, 47-61.

16. Carron, M., Dubois, F., Misdariis, N. & Susini, P. (in press). Speaking about sounds: A tool for communication on sound features. Journal of Design Research.

17. Casella, A. & Mortari, V. (2004). The technique of contemporary orchestration, 2nd revised ed., trans. from 1950 Italian ed. by T. V. Fraschillo. Ricordi, Milano, Italy.

18. Clarke, M., Dufeu, F. & Manning, P. (2013). TIAALS: A new generic set of tools for the interactive aural analysis of electroacoustic music. Proc. Electroacoustic Music Studies Network EMS13, Lisbon.

19. Cogan, R. (1984). New images of musical sound. Cambridge, MA: Harvard University Press.

20. Cook, N. (2013). Beyond the score: Music as performance, Oxford University Press, New York, NY.

21. Couprie, P. (2004). Graphical representation: An analytical and publication tool for electroacoustic music. Organised Sound, 9(1), 109-113.

22. Crestel, L., & Esling, P. Live Orchestral Piano, a system for real-time orchestral music generation.

International Computer Music Conference 2017.

23. Crestel, L., Esling, P., Heng, L. & McAdams, S. (2017). A database linking piano and orchestral MIDI scores with application to automatic projective orchestration. 18th International Society for Music Information Retrieval Conference, Suzhou, China, October 23-28, 2017.

24. Cuddy, L. L., Russo, F. A., & Galembo, A. (2007). Tonality of low-frequency synthesized piano tones. Archiv. Acoust., 32, 541-550.

25. Culling, J. F. & Darwin, C. J. (1993). The role of timbre in the segregation of simultaneous voices with intersecting F0 contours. Percept. Psychophys., 54, 303-309.

26. Deliège, I. (1987). Grouping conditions in listening to music: An approach to Lerdahl & Jackendoff’s grouping preference rules. Mus. Percept., 4, 325-360.

27. Disley, A. C., Howard, D. M., & Hunt, A. D. (2006). Timbral description of musical instruments. In M. Baroni, A. R. Addessi, R. Caterina, & M. Costa (Eds.), Proc.9th ICMPC, Bologna, Italy (pp. 61-68).

28. Dolan, E. (2013). The Orchestral Revolution: Haydn and the Technologies of Timbre. Cambridge University Press, Cambridge, UK.

29. Donin, N. (2015). Sonic imprints: Instrumental resynthesis in contemporary composition. In G. Borio (Ed.), Musical Listening in the Age of Technological Reproduction (pp. 323–41). Ashgate, Farnham, UK.

30. Dubois, D. (Ed.) (2009). Le sentir et le dire : Concepts et méthodes en psychologie et linguistique cognitives. L’Harmattan, Paris, France.

31. Eerola, T., Ferrer, R., & Alluri, V. (2012). Timbre and affect dimensions: Evidence from affect and similarity ratings and acoustic correlates of isolated instrument sounds. Mus. Percept., 30(1), 49-70.

32. Esling, P. & Agon, C. (2012). Time-series data mining. ACM Comput. Surveys, 45(1), art. 12.

33. Esling, P. & Agon, C. (2013). Multiobjective time series matching for audio classification and retrieval. IEEE Trans. Audio, Speech, Lang. Process., 21(10), 2057-2072.

34. Esling, P., Carpentier, G. & Agon, C. (2010). Dynamic musical orchestration using genetic algorithms and a spectro-temporal description of musical instruments. In C. Di Chio et al. (Eds.), Applications of Evolutionary Computation, LNCS 6025, 371-380. Springer Verlag, Berlin.

35. Fales, C. (2002). The paradox of timbre. Ethnomusicology, 46(1), 56-95.

36. Feld, S., & Fox, A. A. (1994). Music and language. Annual Review of Anthropology, 23(1), 25-53.

37. Feld, S., Fox, A. A., Porcello, T., & Samuels, D. (2004). Vocal anthropology. In A. Duranti (Ed.), A Companion to Linguistic Anthropology. Blackwell, Maldon, UK.

38. Fink, R., Latour, M, & Wallmark, Z. (2017). The Relentless Pursuit of Tone: Timbre in Popular Music. Oxford University Press, New York, NY. (forthcoming)

39. Fujinaga, I. & Hankinson, A. (2015). Single interface for music score searching and analysis. Proc.

1st International Conference on Technologies for Music Notation and Representation, Paris, France.

40. Fujinaga, I., Hankinson, A. & Pugin, L. (2016). Automatic score extraction with optical music recognition. In R. Bader, M. Leman & R. Gødoy (Eds.), Current Research in Systematic Musicology. Springer, Heidelberg, Germany.

41. Gates, S., McAdams S. & Smith, B. K. (2016). The effect of timbre differences on pitch interval identification in musically trained listeners. 14th ICMPC, San Francisco.

42. Gieseler, W., Lombardi, L. & Weyer, R.-D. (1985). Instrumentation in der Musik des 20. Jahrhunderts. Moeck Verlag, Celle, Germany.

43. Goodchild, M. (2016). [co-supervised by S. McAdams] Orchestral Gestures: Music-theoretical Perspectives and Emotional Responses. PhD Thesis, McGill University.

44. Goodchild, M. (2016). Digital music libraries: The challenges ahead/Les bibliothèques de musique virtuelles: les défis à venir. Proc. MusCan CAML/ABCM, Calgary.

45. Goodchild, M. & McAdams, S. (2016). Developing orchestration theory from an empirical analysis method. 14th ICMPC, San Francisco.

46. Goodchild, M. & McAdams, S. (2017). Perceptual processes in orchestration. In E. Dolan & A.Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

47. Goodchild, M., Beauregard Cazabon, D., Webber, J., Wild, J. & McAdams, S. (2014). (Re)orchestrating timbre: Behavioural and psychophysiological responses to changes in orchestration. 13 th ICMPC, Seoul.

48. Hadjakos, A., Berndt, A. & S. Waloschek (2015). Synchronizing Spatially Distributed Musical Ensembles, 12th SMC Conference, Maynooth, Ireland.

49. Hamel, K. (1998). NoteAbility, a comprehensive music notation system. Proc. 1998 ICMC, Ann Arbor, MI, pp. 506-509.

50. Hamilton, B. & P. Depalle (2012), A unified view of non-stationary sinusoidal parameter estimation methods using signal derivatives, 2012 IEEE ICASSP, Kyoto, Japan.

51. Hasegawa, R. (2014). Register, root, and voicing in post-tonal harmony. Paper presented at the Annual Meeting of the Music Theory Society of New York State, New York, NY.

52. Hasegawa, R. (2017). Timbre as harmony—harmony as timbre. In E. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

53. Haus, G. & Rodriguez, A. (1993). Formal music representation, a case study: The model of Ravel's Bolero by Petri nets. In G. Haus (Ed.), Music Processing (pp.165-232), A-R Editions, Madison, WI.

54. Hinton, L., Nichols, J., & Ohala, J. J. (Eds.). (1994). Sound symbolism. Cambridge, UK: Cambridge University Press.

55. Hoos, H., Hamel, K., Renz, K. & Kilian, J. (2000). Representing score-level music using the GUIDO music notation format. Comput. Musicol., 13, 77-93.

56. Huron, D. (2016). Voice Leading: The Science Behind a Musical Art, MIT Press, Cambridge, MA.

57. Introini, A., Presti, G. & Boccignone, G. (2016). Audio features affected by music expressiveness: Experimental setup and preliminary results on tuba players. Proc. SIGIR '16, Pisa, Italy, pp. 757-760.

58. Kob, M. (2016). Experimental approaches to the study of damping in musical instruments, in Studies in Musical Acoustics and Psychoacoustics, pp. 187-200, Springer, Berlin.

59. Kob, M. (2017). Transient timbre and pitch changes in musical instruments and voice, International Symposium on Musical Acoustics, Montreal.

60. Kob, M., Amengual, S. V., Sahin, B., Hadjakos, A. & Saulich, M. (2016). Online tool for interactive sound analysis of orchestra instruments. DAGA 2016, pp. 540- 543, Aachen, Germany.

61. Koechlin, C. (1954-1959). Traité de l’orchestration. Max Eschig, Paris, France.

62. Lee, S. (2011). Narrative, performance, and impossible voice in Mahler’s Das klagende Lied. 19thCentury Music, 35(1), 72-89.

63. Lee, S. (2015). Modernist opera’s stigmatized subjects. In B. Howe, et al. (Eds.), The Oxford Handbook of Music and Disability Studies (pp. 661-683). Oxford University Press, New York, NY.

64. Lembke, S.-A. & McAdams, S. (2015). The role of local spectral-envelope characteristics in perceptual blending of wind-instrument sounds. Acta Acustica/Acustica, 101, 1039-1051.

65. Lembke, S.-A., Levine, S. & McAdams, S. (submitted). Blending between bassoon and horn players: An analysis of timbral adjustments during musical performance. Music Perception.

66. Lévy, F. (2014). Le compositeur, son oreille, et ses machines à écrire : Déconstruire les grammatologies du musical pour mieux les composer, Editions J. Vrin, Paris, France.

67. Luizard, P., Katz, B. & Guastavino, C. (2015). Perceived suitability of reverberation in large coupled volume concert halls. Psychomusicology: Music, Mind and Brain, 25(3), 317-325.

68. Marchand S. & Depalle, P. (2008). Generalization of the derivative analysis method to nonstationary sinusoidal modeling. Proc. DAFx Conference, Espoo (pp. 281-288).

69. Marks, L. E. (1975). On colored-hearing synesthesia: Cross-model translations of sensory dimensions. Psychological Bulletin, 82(3), 303-331.

70. McAdams, S. (1984) The auditory image: A metaphor for musical and psychological research on auditory organization. In W.R. Crozier & A.J. Chapman (eds.), Cognitive Processes in the Perception of Art, North-Holland, Amsterdam, pp. 289-323. (http://www.mcgill.ca/mpcl/files/mpcl/mcadams_1984_cogprocpercepart.pdf)

71. McAdams, S. (1989). Psychological constraints on form-bearing dimensions in music. Contemp. Mus. Rev., 4(1), 181-198.

72. McAdams, S. & Battier, M. (Eds.) (2005). Creation and Perception of a Contemporary Musical Work: The Angel of Death by Roger Reynolds. Ircam-Centre Pompidou, Paris, France.

73. McAdams, S. & Bregman, A. S. (1979). Hearing musical streams. Comput. Mus. J., 3(4), 26-43.

74. McAdams, S. & Goodchild, M. (2017). Musical structure: Sound and timbre. In R. Ashley & R. Timmers (Eds.), The Routledge Companion to Music Cognition, pp. 129-139, Routledge, New York, NY. (http://www.mcgill.ca/mpcl/files/mpcl/mcadams_2017_compmuscog.pdf)

75. McAdams, S., Daubresse, E. & Esling, P. (2016a, June). Vers un traité d’orchestration interactive. Presentation at IRCAM's Summer Academy for composers and Festival Manifeste.

76. McAdams, S., Douglas, C. & Vempala, N. (2017). Perception and modeling of affective qualities of musical instrument sounds across pitch registers. Front. Psychol., 8, art. 153. doi: 10.3389/fpsyg.2017.00153

77. McAdams, S., Gianferrara, P., Soden, K. & Goodchild, M. (2016). Factors influencing instrumental blend in orchestral excerpts. 14th ICMPC, San Francisco.

78. McClelland, R. (2006). Extended upbeats in the classical minuet: Interactions with hypermeter and phrase structure. Music Theory Spectrum, 28(1), 23-56.

79. McClelland, R. (2009). Brahms and the principle of destabilised beginnings. Mus. Anal., 28, 3-61.

80. Michel, P. (1995). György Liget - compositeur d'aujourd'hui, 2nd ed. Editions Minerve, Paris.

81. Michel, P. (1999). György Ligeti : Kammerkonzert pour treize instrumentistes. Eléments de l’écriture musicale : trames, textures, signaux, nouvelle polyphonie et autres composantes au service d’une conception dynamique de la forme, Analyse musicale, 34, 31-51.

82. Michel, P. (2015). Forme et mise en espace des timbres dans les œuvres instrumentales et orchestrales de Gilbert Amy, in P. Michel (ed.), Gilbert Amy : Le temps du souffle - textes et essais sur sa musique, pp. 27-45. Symétrie, Lyon.

83. Michel, P. (1997). Timbro, ricerca sonora e scrittura nelle ultime opere di Dallapiccola (1950-70), in M. De Santis (ed.), Dallapiccola - Letture e prospettive - Una monografia a più voci, pp. 157-182. Editions Ricordi/LIM, Milan.

84. Pätynen, J. & Lokki, T. (2010). Directivities of symphony orchestra instruments. Acta Acustica/Acustica, 96(1), 138-167.

85. Pätynen, J., Pulkki, V. & Lokki, T. (2008). Anechoic recording system for symphony orchestra. Acta Acustica/Acustica, 94(6), 856–865.

86. Peeters, G., Giordano, B.L., Susini, P., Misdariis, N., & McAdams, S. (2011). The Timbre Toolbox: Extracting audio descriptors from musical signals. J. Acoust. Soc. Am., 130, 2902-2916.

87. Piston, W. (1955). Orchestration. W. W. Norton, New York, NY.

88. Ponsot, E., Susini, P. & Meunier, S. (2017). Global loudness of rising- and falling-intensity tones: How temporal profile characteristics shape overall judgments. Journal of the Acoustical Society of America, 142, 256 – 267.

89. Presti, G. & Mauro, D.A. (2013). Continuous brightness estimation (CoBE): Implementation and its possible applications. Proc. 10th Int. Symp. CMMR, Marseille, France, pp. 967-974.

90. Presti, G., Mauro, D.A. & Haus, G. (2015). TRAP: TRAnsient Presence detection exploiting Continuous Brightness Estimation (CoBE). Proc. 12th SMC, Maynooth, Ireland, pp. 379-385.

91. Puckette, M. & Lippe, A. C. (1994). Getting the acoustic parameters from a live performance. Proc. ICMPC, Liege, Belgium, pp. 63-65.

92. Puckette, M., Apel, T. & Zicarelli, D. (1998). Real-time audio analysis tools for Pd and MSP. Proc. ICMC, pp. 109-112.

93. Radford, L. (2007). From mixed up to mixin’ it up: Evolving paradigms in electronic music performance. In E. Stubley (Ed.), Compositional Crossroads: Music, McGill, Montréal (pp. 150-179). McGill-Queens University Press, Montreal, QC.

94. Rehding, A. (2005). Wax cylinder revolutions. The Musical Quarterly, 88(1), 123-160.

95. Rehding, A. (2016). Instruments of music theory. Music Theory Online, 22(4).

96. Rehding, A. (2016). Three music-theory lessons. J. Royal Mus. Assoc., 141(2), 251-282.

97. Rhodes, R. (1994). Aural images. In L. Hinton, J. Nichols, & J. J. Ohala (Eds.), Sound symbolism (pp. 276–292). Cambridge: Cambridge University Press.

98. Rimsky-Korsakov, N. (1891/1964). Principles of Orchestration. Trans. M. Steinberg, Dover, New York.

99. Ritter, M., Hamel, K. & Pritchard, B. (2013). Integrated multimodal score-following environment. Proc. 2013 ICMC, Perth, Australia, pp. 185-192.

100. Russo, F. A., & Thompson, W. F. (2005). An interval size illusion: The influence of timbre on the perceived size of melodic intervals. Percept. Psychophys., 67, 559-568.

101. Russo, F. A., Cuddy, L. L., Galembo, A., & Thompson, W. F. (2007). Sensitivity to tonality across the piano range. Perception, 36, 781-790.

102. Russo, F. A., Vempala, N. N., & Sandstrom, G. M. (2013). Predicting musically induced emotions from physiological inputs: Linear and neural network models. Front. Psychol., 4, art. 468.

103. Saariaho, K. (1987). Timbre and harmony: Interpolations of timbral structures. Contemp. Mus. Rev., 2(1), 93-133.

104. Sallis, F. (2015). Music Sketches. Cambridge University Press, Cambridge, UK.

105. Sallis, F., Zattra, L., Burle, J. & Bertolani, V (Eds.) (2017) Live Electronic Music: Composition, Performance, Study. Routledge, New York, NY (forthcoming).

106. Samoylenko, E.S., McAdams, S., & Nosulenko, V.N. (1996) Systematic analysis of verbalizations produced in comparing musical timbres. Int. J. Psychol., 31, 255-278.

107. Sandell, G. J. (1995). Roles for spectral centroid and other factors in determining "blended" instrument pairings in orchestration. Mus. Percept., 13, 209-246.

108. Sarkar, M., Vercoe, B., & Yang, Y. (2007). Words that describe timbre: A study of auditory perception through language. In J. Cross, J. Hawkins, P. Rebuschat, & M. Rohrmeier (Eds.), Language and Music as Cognitive Systems Conference (pp. 37-38). University of Cambridge Press, Cambridge, UK.

109. Sayles, M., Wu, X. & Boyd, J. (2003). CaML: Camera markup language for network interaction. Proc. SPIE Internet Imaging IV, Santa Clara, CA.

110. Schacher, J. C., Miyama, C. & Lossius, T. (2014). The SpatDIF library—Concepts and practical applications in audio software. Proc. ICMC-SMC, Athens, Greece.

111. Schneider, M. (2008). Kunstkritik and Tonmalerei in the Tone Poems of Richard Strauss, in S. Bruhn (ed.), Sonic Transformations of Literary Texts, pp. 173-202, Pendragon, Hillsdale, NY.

112. Schneider, M. (2010). A silentio ad silentium. Essai d’une typologie des silences dans la musique du début du xxe siècle, in Y.-M. Ergal & M. Finck (eds.), Écriture et silence au XXe siècle, pp. 271294, Presses universitaires de Strasbourg, Strasbourg.

113. Schneider, M. (2013). La alte Weise de Tristan est-elle un ranz des vaches ? Vers une approche comparative de la structure et de la signification du solo de cor anglais dans le troisième acte de Tristan, Analyse musicale, 70, 7-14.

114. Sears, D., Caplin, W. & McAdams, S. (2014). Perceiving the classical cadence. Mus. Percept., 31(5), 397-417.

115. Sinclair, S. (2003). Computer-assisted reading: Reconceiving text analysis. Lit. Ling. Comput., 18(2), 175-184.

116. Sinclair, S., Ruecker, S. & Radzikowska, M. (2015). Information visualization for humanities scholars. https://dlsanthology.commons.mla.org/information-visualization-forhumanities-scholars/.

117. Smalley, D. (1997). Spectromorphology: Explaining sound shapes. Organised Sound, 2, 107-126.

118. Smith, J., Burgoyne, J. A., Fujinaga, I., De Roure, D. & Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. Proc. 2011 ISMIR, Miami, pp. 555-560.

119. Socher, R. Ganjoo, M. Manning, C. & Ng, A. (2013). Zero-shot learning through cross-modal transfer. Proc. NIPS 2013, pp. 935–943. 


120. Soden, K., Saks, J. & McAdams, S. (2016). How timbre and expressive intent influence musical communication of emotion. 14th ICMPC, San Francisco.

121. Susini, P., Houix, o. &. Misdariis, N. (2014). Sound design: an applied, experimental framework to study the perception of everyday sounds. The New Soundtrack, 4, 103-121.

122. Tardieu, D. & McAdams, S. (2012). Perception of dyads of percussive and sustained instruments. Mus. Percept., 30(2), 117-128.

123. Tenzer, M. (2017). Timbre and polyphony in Balinese gamelan. In E. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

124. Thoresen, L. & Hedman, A. (2015). Emergent Musical Forms: Aural Explorations. Studies in Music, vol. 24. The University of Western Ontario, London, ON.

125. Tresch, J. & Dolan, E.I. (2013). Toward a new organology: Instruments of music and science. Osiris, 28, 278-298.

126. Vallières, M., Tan, D., Caplin, W. & McAdams, S. (2009). Perception of intrinsic formal functionality: An empirical investigation of Mozart's materials. J. Interdisc. Mus. Stud., 3(1-2), 17-43.

127. Wallmark, Z. (submitted). A corpus analysis of timbre semantics in orchestration treatises.

128. Wallmark, Z. & Kendall, R.A. (2017). Describing sound: The cognitive linguistics of timbre. In E. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

129. Waloschek, S., Berndt, A., Bohl, B. W. & Hadjakos, A. (2016). Accelerating the editing phase in music productions using interactive scores. Proc. 2nd AES WIMP, London, UK.

130. Waloschek, S., Berndt, A., Bohl, B. W. & Hadjakos, A. (2016). Interactive scores in classical music production. Proc. 17th ISMIR, pp. 668-673, New York, NY.

131. Zacharakis, A., Pastiadis, K., & Reiss, J. D. (2014). An interlanguage study of musical timbre semantic dimensions and their acoustic correlates. Mus. Percept., 31(4), 339-358.

132. Zattra, L., Burleigh, I. & Sallis, F. (2011). Studying Luigi Nono's A Pierre. Dell'azzurro silenzio, inquietum (1985) as a performance event. Contemp. Mus. Rev., 30(5), 411-439.

133. Chiasson, F., Traube, C., Lagarrigue, C. & McAdams, S. (2016). Koechlin’s volume: Perception of sound extensity among instrument timbres from different families. Musicae Scientiae, 21(1), 113-131.

134. Choi, B.C. & Pak, A.W. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin. Invest. Med., 29(6), 351-364.

Representative musical works by team members

135. Britton, E. (2017). Heirloom Bison Culture for orchestra and electronics.

136. Czernowin, C. (2010). The Quiet for orchestra in three groups. Schott Musik, Mainz, Germany.

137. Eagle, D. (2011). Two Forms of Intuition for chamber orchestra and computer.

138. Hamel, K. (2011). Les Cloches for chamber ensemble and interactive electronics.

139. Jarrell, M. (2000). Assonance IX for clarinet and orchestra. Henry Lemoine, Paris, France.

140. Leroux, P. (2016). Envers IV for symphony orchestra. Editions Billaudot, Paris, France

141. Lévy, F. (2001). Hérédo-ribotes for solo viola and orchestra. Editions Billaudot, Paris, France.

142. Maresz, Y. (2016). Répliques for augmented harp and orchestra. Editions Durand, Paris, France.

143. Michaud, P. (2006). Chiaroscuro for large orchestra and live electronics.

144. Naón, L. (2014). Quebrada/Horizonte for symphony orchestra, BabelScores, Paris, France.

145. Palej, N. (2013). The Poet and the War for soprano and chamber orchestra.

146. Radford, L. (2010). Online for full orchestra and laptop ensemble.

147. Rea, J. (2006). Figures hâtives for violin and orchestra.

148. Reynolds, R. (2000/2001). The Angel of Death for solo piano, chamber orchestra and computer-processed sound. Edition Peters, New York, NY.

149. Steiger, R. (2008). Cryosphere for orchestra and digital audio signal processing.

150. Tutschku, H. (2016). periods of existence for 10 instruments. BabelScores, Paris, France.

151. Yadegari, S. (2005). Music for Courtyard, computer-generated sound installation.