Publications since APRIL 2018 by ACTOR partners, organized by research axIs

Analysis Axis

Siedenburg, K. & McAdams, S. (2018). Short-term recognition of timbre sequences: Effects of musical training, pitch variability, and timbral similarity. Music Perception, 36(1), 24-39.

Taher, C., Hasegawa, R. & McAdams, S. (2018). Effects of musical context on the recognition of musical motives during listening. Music Perception, 36(1), 77-97., 24(3).

Upham, F. & McAdams, S. (2018). Activity analysis and coordination in continuous responses to music. Music Perception, 35(3), 253-294.

Goodchild, M. & McAdams, S. (2018) Perceptual processes in orchestration. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY.

Wallmark, Z. & Kendall, R.A. (2018) Describing sound: The cognitive linguistics of timbre. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY.


Development Axis


Output Innovation Axis

 

General references from grant proposal

Dolan, E.I. & Rehding, A. (Eds.) (2018), The Oxford Handbook of Timbre, Oxford University Press, New York, NY.

Dolan, E.I. & Patteson, T. (2018) Ethereal timbres. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY.

Fink, R., Latour, M. & Wallmark, Z. (Eds.) (2018) The Relentless Pursuit of Tone, Oxford University Press, New York, NY.

Noble, J. D. K. (2018). What can the temporal structure of auditory perception tell us about musical "timelessness"? Music Theory Online, 24(3).

Rehding, A. (2018) Timbre/techne. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY.

Tenzer, M. (2018) Timbre and polyphony in Balinese gamelan. In E. I. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY.

 

1. Adler, S. (2000). Study of Orchestration, 3rd ed., W.W. Norton, New York, NY.

2. Baggi, D.L. & Haus, G. (2013). Music Navigation with Symbols and Layers: Toward Content Browsing with IEEE 1599 XML Encoding, John Wiley & Sons, Hoboken, NJ.

3. Baratè, A., Haus, G., Ludoviso, L.A. & Presti, G. (2016). Advances and perspectives in web technologies for music representation. @Digicult, 1(2), 1-18.

4. Bay, M., Burgoyne, J. A., Crawford, T., De Roure, D., Downie, J. S., Ehmann, A., Fields, B., Fujinaga, I., Page, K. & Smith, J. B. L (2011). Towards web-scale computational musicology: An update on the SALAMI project. Proc. 10th UK e-Science All Hands Meeting. York, UK.

5. Bengio, Y. (2009). Learning deep architectures for AI. Found. Trends Machine Learning, 2(1), 1–127.

6. Berlioz, H. (1905/1948). Treatise on Instrumentation. Trans. T. Front, Kalmus, New York, NY.

7. Bey, C. & McAdams, S. (2003). Post-recognition of interleaved melodies as an indirect measure of auditory stream formation. J. Exp. Psychol.: Human Percept. Perf., 29, 267–279.

8. Bosseur, J.-Y. & Michel, P. (2007). Musiques contemporaines : Perspectives analytiques 19501985, Editions Minerve, Paris.

9. Boyd, J., Sayles, M., Olsen, L. & Tarjan, P. (2004). Internet broadcast of hockey: A scale prototype. Proc. SPIE Internet Imaging V, San Jose, CA, pp. 193-201.

10. Bregman, A. S. (1990). Auditory Scene Analysis, MIT Press, Cambridge, MA.

11. Britton, E. (2010). Born under a bad star: An analysis of abstract loop-based composition through Aaron Funk’s Szerencsétlen. CEC. eContact 12.4. Montreal, QC. http://econtact.ca/12_4/britton_loop.html

12. Brown, J. C. & Puckette, M. (1993). A high-resolution fundamental frequency determination based on phase changes of the Fourier transform. J. Acoust. Soc. Am., 94(2), 662-667.

13. Carpentier, G., Cordero, V. & Daubresse, E. (2012). Cartographier le timbre. Projet Orchis/Pléione à la Haute Ecole de Musique de Genève. Dissonances, 119, 48-63.

14. Carpentier, G., Daubresse, E., Garcia Victoria, M., Sakei, K. & Villanueva Carratero, F. (2012). Automatic orchestration in practice. Comput. Mus. J., 36, 24-42.

15. Carpentier, G., Tardieu, D., Harvey, J., Assayag, G. & Saint-James, E. (2010). Predicting timbre features of instrument sound combinations: Application to automatic orchestration. J. New Mus. Res., 39, 47-61.

16. Carron, M., Dubois, F., Misdariis, N. & Susini, P. (in press). Speaking about sounds: A tool for communication on sound features. Journal of Design Research.

17. Casella, A. & Mortari, V. (2004). The technique of contemporary orchestration, 2nd revised ed., trans. from 1950 Italian ed. by T. V. Fraschillo. Ricordi, Milano, Italy.

18. Clarke, M., Dufeu, F. & Manning, P. (2013). TIAALS: A new generic set of tools for the interactive aural analysis of electroacoustic music. Proc. Electroacoustic Music Studies Network EMS13, Lisbon.

19. Cogan, R. (1984). New images of musical sound. Cambridge, MA: Harvard University Press.

20. Cook, N. (2013). Beyond the score: Music as performance, Oxford University Press, New York, NY.

21. Couprie, P. (2004). Graphical representation: An analytical and publication tool for electroacoustic music. Organised Sound, 9(1), 109-113.

22. Crestel, L., & Esling, P. Live Orchestral Piano, a system for real-time orchestral music generation.

International Computer Music Conference 2017.

23. Crestel, L., Esling, P., Heng, L. & McAdams, S. (2017). A database linking piano and orchestral MIDI scores with application to automatic projective orchestration. 18th International Society for Music Information Retrieval Conference, Suzhou, China, October 23-28, 2017.

24. Cuddy, L. L., Russo, F. A., & Galembo, A. (2007). Tonality of low-frequency synthesized piano tones. Archiv. Acoust., 32, 541-550.

25. Culling, J. F. & Darwin, C. J. (1993). The role of timbre in the segregation of simultaneous voices with intersecting F0 contours. Percept. Psychophys., 54, 303-309.

26. Deliège, I. (1987). Grouping conditions in listening to music: An approach to Lerdahl & Jackendoff’s grouping preference rules. Mus. Percept., 4, 325-360.

27. Disley, A. C., Howard, D. M., & Hunt, A. D. (2006). Timbral description of musical instruments. In M. Baroni, A. R. Addessi, R. Caterina, & M. Costa (Eds.), Proc.9th ICMPC, Bologna, Italy (pp. 61-68).

28. Dolan, E. (2013). The Orchestral Revolution: Haydn and the Technologies of Timbre. Cambridge University Press, Cambridge, UK.

29. Donin, N. (2015). Sonic imprints: Instrumental resynthesis in contemporary composition. In G. Borio (Ed.), Musical Listening in the Age of Technological Reproduction (pp. 323–41). Ashgate, Farnham, UK.

30. Dubois, D. (Ed.) (2009). Le sentir et le dire : Concepts et méthodes en psychologie et linguistique cognitives. L’Harmattan, Paris, France.

31. Eerola, T., Ferrer, R., & Alluri, V. (2012). Timbre and affect dimensions: Evidence from affect and similarity ratings and acoustic correlates of isolated instrument sounds. Mus. Percept., 30(1), 49-70.

32. Esling, P. & Agon, C. (2012). Time-series data mining. ACM Comput. Surveys, 45(1), art. 12.

33. Esling, P. & Agon, C. (2013). Multiobjective time series matching for audio classification and retrieval. IEEE Trans. Audio, Speech, Lang. Process., 21(10), 2057-2072.

34. Esling, P., Carpentier, G. & Agon, C. (2010). Dynamic musical orchestration using genetic algorithms and a spectro-temporal description of musical instruments. In C. Di Chio et al. (Eds.), Applications of Evolutionary Computation, LNCS 6025, 371-380. Springer Verlag, Berlin.

35. Fales, C. (2002). The paradox of timbre. Ethnomusicology, 46(1), 56-95.

36. Feld, S., & Fox, A. A. (1994). Music and language. Annual Review of Anthropology, 23(1), 25-53.

37. Feld, S., Fox, A. A., Porcello, T., & Samuels, D. (2004). Vocal anthropology. In A. Duranti (Ed.), A Companion to Linguistic Anthropology. Blackwell, Maldon, UK.

38. Fink, R., Latour, M, & Wallmark, Z. (2017). The Relentless Pursuit of Tone: Timbre in Popular Music. Oxford University Press, New York, NY. (forthcoming)

39. Fujinaga, I. & Hankinson, A. (2015). Single interface for music score searching and analysis. Proc.

1st International Conference on Technologies for Music Notation and Representation, Paris, France.

40. Fujinaga, I., Hankinson, A. & Pugin, L. (2016). Automatic score extraction with optical music recognition. In R. Bader, M. Leman & R. Gødoy (Eds.), Current Research in Systematic Musicology. Springer, Heidelberg, Germany.

41. Gates, S., McAdams S. & Smith, B. K. (2016). The effect of timbre differences on pitch interval identification in musically trained listeners. 14th ICMPC, San Francisco.

42. Gieseler, W., Lombardi, L. & Weyer, R.-D. (1985). Instrumentation in der Musik des 20. Jahrhunderts. Moeck Verlag, Celle, Germany.

43. Goodchild, M. (2016). [co-supervised by S. McAdams] Orchestral Gestures: Music-theoretical Perspectives and Emotional Responses. PhD Thesis, McGill University.

44. Goodchild, M. (2016). Digital music libraries: The challenges ahead/Les bibliothèques de musique virtuelles: les défis à venir. Proc. MusCan CAML/ABCM, Calgary.

45. Goodchild, M. & McAdams, S. (2016). Developing orchestration theory from an empirical analysis method. 14th ICMPC, San Francisco.

46. Goodchild, M. & McAdams, S. (2017). Perceptual processes in orchestration. In E. Dolan & A.Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

47. Goodchild, M., Beauregard Cazabon, D., Webber, J., Wild, J. & McAdams, S. (2014). (Re)orchestrating timbre: Behavioural and psychophysiological responses to changes in orchestration. 13 th ICMPC, Seoul.

48. Hadjakos, A., Berndt, A. & S. Waloschek (2015). Synchronizing Spatially Distributed Musical Ensembles, 12th SMC Conference, Maynooth, Ireland.

49. Hamel, K. (1998). NoteAbility, a comprehensive music notation system. Proc. 1998 ICMC, Ann Arbor, MI, pp. 506-509.

50. Hamilton, B. & P. Depalle (2012), A unified view of non-stationary sinusoidal parameter estimation methods using signal derivatives, 2012 IEEE ICASSP, Kyoto, Japan.

51. Hasegawa, R. (2014). Register, root, and voicing in post-tonal harmony. Paper presented at the Annual Meeting of the Music Theory Society of New York State, New York, NY.

52. Hasegawa, R. (2017). Timbre as harmony—harmony as timbre. In E. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

53. Haus, G. & Rodriguez, A. (1993). Formal music representation, a case study: The model of Ravel's Bolero by Petri nets. In G. Haus (Ed.), Music Processing (pp.165-232), A-R Editions, Madison, WI.

54. Hinton, L., Nichols, J., & Ohala, J. J. (Eds.). (1994). Sound symbolism. Cambridge, UK: Cambridge University Press.

55. Hoos, H., Hamel, K., Renz, K. & Kilian, J. (2000). Representing score-level music using the GUIDO music notation format. Comput. Musicol., 13, 77-93.

56. Huron, D. (2016). Voice Leading: The Science Behind a Musical Art, MIT Press, Cambridge, MA.

57. Introini, A., Presti, G. & Boccignone, G. (2016). Audio features affected by music expressiveness: Experimental setup and preliminary results on tuba players. Proc. SIGIR '16, Pisa, Italy, pp. 757-760.

58. Kob, M. (2016). Experimental approaches to the study of damping in musical instruments, in Studies in Musical Acoustics and Psychoacoustics, pp. 187-200, Springer, Berlin.

59. Kob, M. (2017). Transient timbre and pitch changes in musical instruments and voice, International Symposium on Musical Acoustics, Montreal.

60. Kob, M., Amengual, S. V., Sahin, B., Hadjakos, A. & Saulich, M. (2016). Online tool for interactive sound analysis of orchestra instruments. DAGA 2016, pp. 540- 543, Aachen, Germany.

61. Koechlin, C. (1954-1959). Traité de l’orchestration. Max Eschig, Paris, France.

62. Lee, S. (2011). Narrative, performance, and impossible voice in Mahler’s Das klagende Lied. 19thCentury Music, 35(1), 72-89.

63. Lee, S. (2015). Modernist opera’s stigmatized subjects. In B. Howe, et al. (Eds.), The Oxford Handbook of Music and Disability Studies (pp. 661-683). Oxford University Press, New York, NY.

64. Lembke, S.-A. & McAdams, S. (2015). The role of local spectral-envelope characteristics in perceptual blending of wind-instrument sounds. Acta Acustica/Acustica, 101, 1039-1051.

65. Lembke, S.-A., Levine, S. & McAdams, S. (submitted). Blending between bassoon and horn players: An analysis of timbral adjustments during musical performance. Music Perception.

66. Lévy, F. (2014). Le compositeur, son oreille, et ses machines à écrire : Déconstruire les grammatologies du musical pour mieux les composer, Editions J. Vrin, Paris, France.

67. Luizard, P., Katz, B. & Guastavino, C. (2015). Perceived suitability of reverberation in large coupled volume concert halls. Psychomusicology: Music, Mind and Brain, 25(3), 317-325.

68. Marchand S. & Depalle, P. (2008). Generalization of the derivative analysis method to nonstationary sinusoidal modeling. Proc. DAFx Conference, Espoo (pp. 281-288).

69. Marks, L. E. (1975). On colored-hearing synesthesia: Cross-model translations of sensory dimensions. Psychological Bulletin, 82(3), 303-331.

70. McAdams, S. (1984) The auditory image: A metaphor for musical and psychological research on auditory organization. In W.R. Crozier & A.J. Chapman (eds.), Cognitive Processes in the Perception of Art, North-Holland, Amsterdam, pp. 289-323. (http://www.mcgill.ca/mpcl/files/mpcl/mcadams_1984_cogprocpercepart.pdf)

71. McAdams, S. (1989). Psychological constraints on form-bearing dimensions in music. Contemp. Mus. Rev., 4(1), 181-198.

72. McAdams, S. & Battier, M. (Eds.) (2005). Creation and Perception of a Contemporary Musical Work: The Angel of Death by Roger Reynolds. Ircam-Centre Pompidou, Paris, France.

73. McAdams, S. & Bregman, A. S. (1979). Hearing musical streams. Comput. Mus. J., 3(4), 26-43.

74. McAdams, S. & Goodchild, M. (2017). Musical structure: Sound and timbre. In R. Ashley & R. Timmers (Eds.), The Routledge Companion to Music Cognition, pp. 129-139, Routledge, New York, NY. (http://www.mcgill.ca/mpcl/files/mpcl/mcadams_2017_compmuscog.pdf)

75. McAdams, S., Daubresse, E. & Esling, P. (2016a, June). Vers un traité d’orchestration interactive. Presentation at IRCAM's Summer Academy for composers and Festival Manifeste.

76. McAdams, S., Douglas, C. & Vempala, N. (2017). Perception and modeling of affective qualities of musical instrument sounds across pitch registers. Front. Psychol., 8, art. 153. doi: 10.3389/fpsyg.2017.00153

77. McAdams, S., Gianferrara, P., Soden, K. & Goodchild, M. (2016). Factors influencing instrumental blend in orchestral excerpts. 14th ICMPC, San Francisco.

78. McClelland, R. (2006). Extended upbeats in the classical minuet: Interactions with hypermeter and phrase structure. Music Theory Spectrum, 28(1), 23-56.

79. McClelland, R. (2009). Brahms and the principle of destabilised beginnings. Mus. Anal., 28, 3-61.

80. Michel, P. (1995). György Liget - compositeur d'aujourd'hui, 2nd ed. Editions Minerve, Paris.

81. Michel, P. (1999). György Ligeti : Kammerkonzert pour treize instrumentistes. Eléments de l’écriture musicale : trames, textures, signaux, nouvelle polyphonie et autres composantes au service d’une conception dynamique de la forme, Analyse musicale, 34, 31-51.

82. Michel, P. (2015). Forme et mise en espace des timbres dans les œuvres instrumentales et orchestrales de Gilbert Amy, in P. Michel (ed.), Gilbert Amy : Le temps du souffle - textes et essais sur sa musique, pp. 27-45. Symétrie, Lyon.

83. Michel, P. (1997). Timbro, ricerca sonora e scrittura nelle ultime opere di Dallapiccola (1950-70), in M. De Santis (ed.), Dallapiccola - Letture e prospettive - Una monografia a più voci, pp. 157-182. Editions Ricordi/LIM, Milan.

84. Pätynen, J. & Lokki, T. (2010). Directivities of symphony orchestra instruments. Acta Acustica/Acustica, 96(1), 138-167.

85. Pätynen, J., Pulkki, V. & Lokki, T. (2008). Anechoic recording system for symphony orchestra. Acta Acustica/Acustica, 94(6), 856–865.

86. Peeters, G., Giordano, B.L., Susini, P., Misdariis, N., & McAdams, S. (2011). The Timbre Toolbox: Extracting audio descriptors from musical signals. J. Acoust. Soc. Am., 130, 2902-2916.

87. Piston, W. (1955). Orchestration. W. W. Norton, New York, NY.

88. Ponsot, E., Susini, P. & Meunier, S. (2017). Global loudness of rising- and falling-intensity tones: How temporal profile characteristics shape overall judgments. Journal of the Acoustical Society of America, 142, 256 – 267.

89. Presti, G. & Mauro, D.A. (2013). Continuous brightness estimation (CoBE): Implementation and its possible applications. Proc. 10th Int. Symp. CMMR, Marseille, France, pp. 967-974.

90. Presti, G., Mauro, D.A. & Haus, G. (2015). TRAP: TRAnsient Presence detection exploiting Continuous Brightness Estimation (CoBE). Proc. 12th SMC, Maynooth, Ireland, pp. 379-385.

91. Puckette, M. & Lippe, A. C. (1994). Getting the acoustic parameters from a live performance. Proc. ICMPC, Liege, Belgium, pp. 63-65.

92. Puckette, M., Apel, T. & Zicarelli, D. (1998). Real-time audio analysis tools for Pd and MSP. Proc. ICMC, pp. 109-112.

93. Radford, L. (2007). From mixed up to mixin’ it up: Evolving paradigms in electronic music performance. In E. Stubley (Ed.), Compositional Crossroads: Music, McGill, Montréal (pp. 150-179). McGill-Queens University Press, Montreal, QC.

94. Rehding, A. (2005). Wax cylinder revolutions. The Musical Quarterly, 88(1), 123-160.

95. Rehding, A. (2016). Instruments of music theory. Music Theory Online, 22(4).

96. Rehding, A. (2016). Three music-theory lessons. J. Royal Mus. Assoc., 141(2), 251-282.

97. Rhodes, R. (1994). Aural images. In L. Hinton, J. Nichols, & J. J. Ohala (Eds.), Sound symbolism (pp. 276–292). Cambridge: Cambridge University Press.

98. Rimsky-Korsakov, N. (1891/1964). Principles of Orchestration. Trans. M. Steinberg, Dover, New York.

99. Ritter, M., Hamel, K. & Pritchard, B. (2013). Integrated multimodal score-following environment. Proc. 2013 ICMC, Perth, Australia, pp. 185-192.

100. Russo, F. A., & Thompson, W. F. (2005). An interval size illusion: The influence of timbre on the perceived size of melodic intervals. Percept. Psychophys., 67, 559-568.

101. Russo, F. A., Cuddy, L. L., Galembo, A., & Thompson, W. F. (2007). Sensitivity to tonality across the piano range. Perception, 36, 781-790.

102. Russo, F. A., Vempala, N. N., & Sandstrom, G. M. (2013). Predicting musically induced emotions from physiological inputs: Linear and neural network models. Front. Psychol., 4, art. 468.

103. Saariaho, K. (1987). Timbre and harmony: Interpolations of timbral structures. Contemp. Mus. Rev., 2(1), 93-133.

104. Sallis, F. (2015). Music Sketches. Cambridge University Press, Cambridge, UK.

105. Sallis, F., Zattra, L., Burle, J. & Bertolani, V (Eds.) (2017) Live Electronic Music: Composition, Performance, Study. Routledge, New York, NY (forthcoming).

106. Samoylenko, E.S., McAdams, S., & Nosulenko, V.N. (1996) Systematic analysis of verbalizations produced in comparing musical timbres. Int. J. Psychol., 31, 255-278.

107. Sandell, G. J. (1995). Roles for spectral centroid and other factors in determining "blended" instrument pairings in orchestration. Mus. Percept., 13, 209-246.

108. Sarkar, M., Vercoe, B., & Yang, Y. (2007). Words that describe timbre: A study of auditory perception through language. In J. Cross, J. Hawkins, P. Rebuschat, & M. Rohrmeier (Eds.), Language and Music as Cognitive Systems Conference (pp. 37-38). University of Cambridge Press, Cambridge, UK.

109. Sayles, M., Wu, X. & Boyd, J. (2003). CaML: Camera markup language for network interaction. Proc. SPIE Internet Imaging IV, Santa Clara, CA.

110. Schacher, J. C., Miyama, C. & Lossius, T. (2014). The SpatDIF library—Concepts and practical applications in audio software. Proc. ICMC-SMC, Athens, Greece.

111. Schneider, M. (2008). Kunstkritik and Tonmalerei in the Tone Poems of Richard Strauss, in S. Bruhn (ed.), Sonic Transformations of Literary Texts, pp. 173-202, Pendragon, Hillsdale, NY.

112. Schneider, M. (2010). A silentio ad silentium. Essai d’une typologie des silences dans la musique du début du xxe siècle, in Y.-M. Ergal & M. Finck (eds.), Écriture et silence au XXe siècle, pp. 271294, Presses universitaires de Strasbourg, Strasbourg.

113. Schneider, M. (2013). La alte Weise de Tristan est-elle un ranz des vaches ? Vers une approche comparative de la structure et de la signification du solo de cor anglais dans le troisième acte de Tristan, Analyse musicale, 70, 7-14.

114. Sears, D., Caplin, W. & McAdams, S. (2014). Perceiving the classical cadence. Mus. Percept., 31(5), 397-417.

115. Sinclair, S. (2003). Computer-assisted reading: Reconceiving text analysis. Lit. Ling. Comput., 18(2), 175-184.

116. Sinclair, S., Ruecker, S. & Radzikowska, M. (2015). Information visualization for humanities scholars. https://dlsanthology.commons.mla.org/information-visualization-forhumanities-scholars/.

117. Smalley, D. (1997). Spectromorphology: Explaining sound shapes. Organised Sound, 2, 107-126.

118. Smith, J., Burgoyne, J. A., Fujinaga, I., De Roure, D. & Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. Proc. 2011 ISMIR, Miami, pp. 555-560.

119. Socher, R. Ganjoo, M. Manning, C. & Ng, A. (2013). Zero-shot learning through cross-modal transfer. Proc. NIPS 2013, pp. 935–943. 


120. Soden, K., Saks, J. & McAdams, S. (2016). How timbre and expressive intent influence musical communication of emotion. 14th ICMPC, San Francisco.

121. Susini, P., Houix, o. &. Misdariis, N. (2014). Sound design: an applied, experimental framework to study the perception of everyday sounds. The New Soundtrack, 4, 103-121.

122. Tardieu, D. & McAdams, S. (2012). Perception of dyads of percussive and sustained instruments. Mus. Percept., 30(2), 117-128.

123. Tenzer, M. (2017). Timbre and polyphony in Balinese gamelan. In E. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

124. Thoresen, L. & Hedman, A. (2015). Emergent Musical Forms: Aural Explorations. Studies in Music, vol. 24. The University of Western Ontario, London, ON.

125. Tresch, J. & Dolan, E.I. (2013). Toward a new organology: Instruments of music and science. Osiris, 28, 278-298.

126. Vallières, M., Tan, D., Caplin, W. & McAdams, S. (2009). Perception of intrinsic formal functionality: An empirical investigation of Mozart's materials. J. Interdisc. Mus. Stud., 3(1-2), 17-43.

127. Wallmark, Z. (submitted). A corpus analysis of timbre semantics in orchestration treatises.

128. Wallmark, Z. & Kendall, R.A. (2017). Describing sound: The cognitive linguistics of timbre. In E. Dolan & A. Rehding (Eds.), The Oxford Handbook of Timbre, Oxford University Press, New York, NY. (forthcoming)

129. Waloschek, S., Berndt, A., Bohl, B. W. & Hadjakos, A. (2016). Accelerating the editing phase in music productions using interactive scores. Proc. 2nd AES WIMP, London, UK.

130. Waloschek, S., Berndt, A., Bohl, B. W. & Hadjakos, A. (2016). Interactive scores in classical music production. Proc. 17th ISMIR, pp. 668-673, New York, NY.

131. Zacharakis, A., Pastiadis, K., & Reiss, J. D. (2014). An interlanguage study of musical timbre semantic dimensions and their acoustic correlates. Mus. Percept., 31(4), 339-358.

132. Zattra, L., Burleigh, I. & Sallis, F. (2011). Studying Luigi Nono's A Pierre. Dell'azzurro silenzio, inquietum (1985) as a performance event. Contemp. Mus. Rev., 30(5), 411-439.

133. Chiasson, F., Traube, C., Lagarrigue, C. & McAdams, S. (2016). Koechlin’s volume: Perception of sound extensity among instrument timbres from different families. Musicae Scientiae, 21(1), 113-131.

134. Choi, B.C. & Pak, A.W. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin. Invest. Med., 29(6), 351-364.

Representative musical works by team members

135. Britton, E. (2017). Heirloom Bison Culture for orchestra and electronics.

136. Czernowin, C. (2010). The Quiet for orchestra in three groups. Schott Musik, Mainz, Germany.

137. Eagle, D. (2011). Two Forms of Intuition for chamber orchestra and computer.

138. Hamel, K. (2011). Les Cloches for chamber ensemble and interactive electronics.

139. Jarrell, M. (2000). Assonance IX for clarinet and orchestra. Henry Lemoine, Paris, France.

140. Leroux, P. (2016). Envers IV for symphony orchestra. Editions Billaudot, Paris, France

141. Lévy, F. (2001). Hérédo-ribotes for solo viola and orchestra. Editions Billaudot, Paris, France.

142. Maresz, Y. (2016). Répliques for augmented harp and orchestra. Editions Durand, Paris, France.

143. Michaud, P. (2006). Chiaroscuro for large orchestra and live electronics.

144. Naón, L. (2014). Quebrada/Horizonte for symphony orchestra, BabelScores, Paris, France.

145. Palej, N. (2013). The Poet and the War for soprano and chamber orchestra.

146. Radford, L. (2010). Online for full orchestra and laptop ensemble.

147. Rea, J. (2006). Figures hâtives for violin and orchestra.

148. Reynolds, R. (2000/2001). The Angel of Death for solo piano, chamber orchestra and computer-processed sound. Edition Peters, New York, NY.

149. Steiger, R. (2008). Cryosphere for orchestra and digital audio signal processing.

150. Tutschku, H. (2016). periods of existence for 10 instruments. BabelScores, Paris, France.

151. Yadegari, S. (2005). Music for Courtyard, computer-generated sound installation.